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Outline
1) Status of reconstruction

2) Genome-scale in silico models of E. 
coli

3) A Genome-Scale in silico Model of
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The Intracellular 
Environment is 
Very Complex:  
How do we 
construct models at 
a genome-scale?

From The Machinery of Life, 
David S. Goodsell, 

Springer-Verlag, New York, 1993.

The Intracellular Environment

The above figure depicts the crowded environment that results from having 
30% biomass. The depiction of the intracellular environment shown here is 
very helpful when trying to formulate  a strategy on how to go about 
mathematically modeling and simulating this very complex environment.
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What is in a reconstruction?

Genome:Genome:
Annotated genes
Gene location
Regulatory regions
Wobble base pairs

Biochemistry:Biochemistry:
Stereochemistry
pH and pKa (charge)
Elemental balance
Charge balance
Multiple reactions/enzyme
Multiple enzymes/reaction

Transcription/translation:Transcription/translation:
Gene to transcript to protein to 

reaction association
Transcript half-lives
tRNA abundances
Ribosomal capacities

Physiology:Physiology:
Flux data
Knock-outs
Balanced functions
Overall phenotypic behavior
Location of gene product 

compartmentalization

WHAT IS IN A RECONSTRUCTION?

There are numerous sources we use in a metabolic reconstruction. The first type of data we use relates 
to an organism’s genome. For example, genome annotations provide useful insight into potential 
functional assignments of open reading frames. Gene location may be provide insight into the way a 
gene is expressed. It is also important for understanding the regulatory structure that controls this 
expression. By studying the known effects of repressors and activators, we can implement rules to 
describe a gene’s regulation. Our lab is also interested in wobble base pairs, which may lead to clues 
about an organism’s protein composition.

Another source of information is biochemical data. Stereochemistry, pH, and pKa are all important in 
determining the exact state of compounds that are involved in the reactions within the organism. We 
also must consider the elemental and charge balance of these reactions, which are known to hold true in 
vivo. Finally, we are also concerned with the association between enzymes and reactions, such as 
identifying isozymes and protein complexes.

We also consider transcription and translation in a metabolic reconstruction. It is important to 
understand the associations between genes, proteins, and reactions in order to properly characterize 
these processes. The half-lives of transcripts, tRNA abundancies, and ribosomal capacities all impact an 
organism’s protein composition.

Finally, physiological data is required to understand the network as a whole. Flux data and knock-outs 
are useful for testing our models in their prediction of phenotypic behaviors. We can also use 
physiological data for the model development, such as identifying the compartmental location of a 
particular gene product.
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Status of Genome-Scale Models

Reconstruction of metabolic models is routine
– Have several predictive bacterial models
– First eukaryotic model built
– First draft to human model emerging

Reconstruction of regulatory networks is underway
– Have begun to test a regulated E. coli model

– Have started to implement regulatory rules in yeast

Organism Year Genes Reactions Metabolites
Escherichia coli (core) 1990 24 14 17
Escherichia coli 1993 250 146 118
Escherichia coli 1998 306 317 305
Haemophilus influenzae 1999 362 488 343
Escherichia coli (v1.0) 2000 695 720 436
Helicobacter pylori 2002 291 388 339
Escherichia coli (regulated) 2002 149 113 63
Saccharomyces cerevisiae 2002 957 1294 801
Escherichia coli (v1.1) 2003 906 1043 594

Gathering biological data and using it to reconstruct metabolic models is routine . 
We have build several predictive bacterial models such as E. coli, H. influenzae, and 
H. pylori [point out in table] and our first eukaryotic model, S. cerevisiae [point out in 
table].

We have already laid the groundwork for reconstructing regulatory networks and 
incorporating them into our metabolic models. In fact, we have begun to test a 
regulated E coli network and have started to implement regulatory rules in yeast.

Finally, we have just begun to reconstruct signaling networks, such as the JAK-STAT 
pathway in yeast.
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Genome-scale in silico models of
Escherichia coli
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E. Coli at a Glance

• E. coli is a Gram-negative 
bacterium

• It is a prokaryote and belongs to 
the family Enterobacteria.

• It is a well-studied organism in 
terms of its metabolism and 
regulation.

• There are currently 3 DNA 
sequenced strains of E. coli:  
– K12: MG1655
– O157:H7 EDL933
– O157:H7 VT2-Sakai

http://www.chromosome.com/bacteria_wallpaper.html

E. coli is a Gram-negative bacteria.  It is a prokaryote belonging to the family 
Enterobacteria.  E. coli has been studied physiologically and biochemically for a long 
time.  Its metabolism and regulation are more characterized thanother bacteria.  There 
are many different strains of E. coli.  Three strains have been fully sequenced and 
annotated, K12:MG1655 in 1997, and O157:H7 in 2001.
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“Thirteen years of constraint-based model building of E. coli” J Bact, May 2003

Development of the E. coli ModelDevelopment of the E. coli Model

The development of successive constraint-based FBA models of E. coli. Constraint-
based models of E. coli first focused on metabolism. By the time the complete 
genome was sequenced (1997), only 26% of metabolic genes were accounted for in 
the FBA models. Over the next 5 years the number grew to include nearly 80% of the 
metabolic genes. Methods for incorporating transcriptional regulation have been 
developed and implemented in the core metabolic model of E. coli, as have methods 
for including protein synthesis. Expanding the regulatory and protein synthesis models 
to the genome scale can be accomplished by using the information that is known 
today (indicated in dotted lines). Further gene annotations should increase the size of 
models (dashed lines). These three components can be combined to form an integrated 
model that accounts for nearly 2,000 genes.
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Model Milestones

1. Varma Model (146 Rxns)1993

2. Edwards Model (720 Rxns)2000

Phase Plane Analysis (II.14)
Gene Deletion Studies (II.13)

Robustness Analysis (II.13)

FBA and Linear Optimization (II.11)

Experimental Comparisons (II.15)

Covert Model (113 Rxns)2002

Growth as an Objective Function

Reed Model (947 Rxns)2002

Dynamic Growth Simulation (II.16)

The first genome-scale model of E. coli was reconstructed in 2000 from genomic, 
biochemical, and physiological data.  The model contained 720 reactions, associated 
with metabolism and transport.  Again most of the results from this model have 
already been presented throughout the course.  Gene deletion studies were performed; 
the model was found to correctly predict the in vivo results in 86% of the cases 
studied.  The model has been extensively used in calculating phase planes for various 
carbon sources.  Experiments have been performed validating the predictive 
capabilities of the model, see topic II.15. An example will be shown on the next slide.
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Predicted Growth and Secretion Rates
(Aerobic Batch Culture)
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Shown here is a time course for an aerobic batch culture of E. coli grown on glucose 
minimal media.  Glucose is being consumed to make biomass and acetate is being 
secreted as a by-product. When glucose is depleted the acetate is take up and utilized.  
The curves represent the model predictions based on the equations shown.  
Experimental data points are also shown.  There is a good agreement between the 
model and experimental data.  The model does not predict the time lag associated with 
reabsorption of acetate since gene expression and protein synthesis are not 
incorporated into the model.



11

University of California, San Diego
Department of Bioengineering

Systems Biology Research Group
http://systemsbiology.ucsd.edu

Phase Plane Analysis

• Calculated the following Phase Planes:  Glucose, 
AKG, Glycerol, Acetate, Pyruvate, Malate, 
Succinate, and Lactate.

• Results: Glucose, Pyruvate, Succinate, Malate, 
Acetate, Glycerol* and Lactate phase planes (2D 
and 3D) appear to be the same.  Biomass yields do 
not change.  AKG was the only one that was 
different.
*Glycerol was the same only after deletion of katG and katE genes

A comparison of the phenotypic phase planes between models yielded minor 
differences.   Originally the new phase plane for glycerol was different, but after 
looking at calculated flux distributions it was decided that katG and katE (that were 
added to the old model) , which encode hydroperoxidase (2 H2O2 ? O2 +H2O) 
should be removed.  The model predicted an high flux through some of the vitamin 
B6 pathways creating a cycle that produced H2O2.  With katG and katE present, the 
model predicted that this cycle would operate along with the hydroperoxidase enzyme 
to generate or consume O2.  The final version of the new model (v1.1) didn’t have the
katG and katE enzymes.  

After removal of the hydroperoxidase from the new model, the phase planes for 
glucose, pyruvate, succinate, malate, acetate, glycerol and lactate the phase planes 
were identical to those generated by v1.01.  a-ketoglutarate (AKG) was the only 
carbon source tested whose phase plane changed. 
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Succinate 3-D Phenotype Phase Plane

LO

Dual 
substrate 
limited 
region

This figure, shows the Succinate-oxygen PhPP in three dimensions.

•The formalism is similar to the 3-D acetate PhPP

•Here the effect of the carbon source on the structure of the PhPP can be seen.

•The LO is shown here, and the data points with reduced succinate uptake 
rates all lie on (or near) the LO, 

•However, when the succinate uptake rate was increased, the experimental 
data followed the LO until the oxygen mass transfer constraint was reached.  
At this point, the growth rate and the succinate uptake were increased by 
moving into region 2 of the phase plane.
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E. coli does evolve towards 
stoichiometric optimality
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When E. coli was grown on glycerol, the cells initially exhibited sub-optimal growth 
behavior.  They operated in region 1 of the phase plane where futile cycles are being 
used.  Serial batch cultures were performed and the cells evolved towards the line of 
optimality that was predicted a priori in silico.
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“Thirteen years of constraint-based model building of E. coli” J Bact , May 2003

Integrated Model of E. coliIntegrated Model of E. coli

Integrated constraint-based model of E. coli: the E. coli i2K model. Constraint-based 
modeling frameworks have been developed for metabolism, regulation, transcription, 
and translation. The connectivity among the three modeling components is shown 
here. Integration of these three modeling components should produce an integrated 
model of E. coli that accounts for nearly 2,000 genes, referred to as the E. coli i2K 
model. This model can be used to reconcile diverse “-omics” data and utilize the data 
to more accurately predict a cellular phenotype.
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Combined Regulatory/Metabolic Modeling

• Physiological time 
courses (growth, 
uptake/secretion)

• Microarray simulation
• Effects of gene 

deletions on cellular 
behavior
– More genes may be 

evaluated
– More accurate overall
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COMBINED REGULATORY AND METABOLIC MODELING

This slide shows what kind of calculations are possible using the regulated flux 
balance approach and the regulated E. coli metabolic network in a simulation 
of the glucose- lactose diauxic shift.  Using this approach it is possible to 
generate time courses of growth as well as glucose and lactose uptake.  It is 
also possible to infer concentrations of proteins and even to simulate, 
qualitatively, gene expression data.  We can also simulate the effects of gene 
deletions on cellular behavior with more accuracy and broader scope.
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A Genome-Scale in silico Model of 
Saccharomyces cerevisiae
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S. cerevisiae at a Glance

Applications
Medicine: production of insulin
Industry: proteins for feedstock enrichment, glycerol, food additives, etc.
Domestics: winery, brewery, and bakery

The Model Eukaryotic Organism
Well studied genetic, metabolic, and regulatory biology
Easy to grow and manipulate
Basis for studying more complex eukaryotes

Genome Characteristic
Fully sequenced in 1996 
12,052 Kbp genome length
6,259 ORF, ~4,300 functionally known genes

The genome of Saccharomyces cerevisiae was fully sequenced, anno tated, and 
became available to the public in 1996. The length of the genome is about 12 
mega base-pair and it contains about 6300 open reading frames of which about 
4300 have known annotation based on genetics, biochemistry, or homology.

S. cerevisiae has numerous applications in medicine, for instance in production 
of pharmacological proteins such as insulin; in industry in mass-production of 
various proteins and food additives; and it has a long history in domestics in 
production of alcoholic beverages and bakery, which make it the oldest 
microorganism studied by humans.

S. cerevisiae has been chosen by the scientific community as the model 
eukaryotic organism for several reasons. Its genetic, metabolic, and regulatory 
biology is well studied and well understood. Its relatively simplistic biology 
and the easiness in manipulating its genetic composition makes it attractive to 
work with and convenient to grow in laboratories. Studying and understanding 
the biology and physiological behavior of this organism can therefore be the 
basis for understanding more complex eukaryotic organisms such as human 
cells.
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Network Characteristics

S. Cerevisiae Metabolic Network
Genes 697
Metabolites (total) 854
Metabolic reactions (total) 1212

cytosolic reactions 725
mitochondrial reactions 131
exchange fluxes

cytosolic exchange fluxes 294
mitochondrial exchange fluxes 62

Reactions with ORF assignments 953

The yeast in silico model is composed of 697 genes, 868 metabolites, and 1212 
reactions, of which 131 occur in mitochondria, 725 in cytosol, and 356 are 
exchange fluxes across the mitochondrial and cytocolic membrane. The genes 
included in the model constitute about 16% of the known genes in the genome 
and 58.7% of the known metabolic genes.
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Anaerobic Glucose-Limited 
Continuous Culture

Experimental data are adopted from: Nissen, T.L., et al., Flux distributions in anaerobic, glucose -limited continuous cultures of 
Saccharomyces cerevisiae. Microbiology, 1997. 143(Pt 1): p. 203-18
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Aerobic Glucose-Limited 
Continuous Culture
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Aerobic Glucose-Limited 
Continuous Culture
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Waste

Experimental data are adopted from: Overkamp, K.M., et. al., In vivo analysis of the mechanisms for oxidation of cytosolic NADH by 
Saccharomyces cerevisiae mitochondria. Journal of Bacteriology 2000 May, 182(10):2823-30.
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Gene name
defined 

complete Glc
defined minimal 

Glc
defined minimal 

Ace
defined minimal 

Eth
(in silico/in 

vivo )
(in silico/in 

vivo )
(in silico/ in 

vivo )
(in silico/ in 

vivo)
References: 

(for minimal media)
ACO1 (+/+) (-/-) Ga ngloff (1990)
CDC19# (+/ -) (+/ -) Boles (1998)

CIT1 (+/+) (+/+) Kim (1986)

CIT2 (+/+) (+/+) Kim (1986)
CIT3 (+/+)

DAL7 (+/+) (+/+) (+/+) (+/+) Hartig (1992)

ENO1 (+/+)
ENO2$$ (+/ -) (+/ -)

FBA1* (+/ -) (+/ -)

FBP1 (+/+) (+/+) (-/-)
Sedivy (1985), Gancedo 

(1984)
FUM1 (+/+)
GLK1 (+/+)
GND1## (+/ -) (+/ -)
GND2 (+/+)
GPM1|| (+/ -) (+/ -)
GPM2 (+/+)
GPM3 (+/+)
HXK1 (+/+)
HXK2 (+/+)
ICL1 (+/+) (+/+) Smith (1996)
IDH1 (+/+) (+ /+) Cupp (1992)
IDH2 (+/+) (+/+) Cupp (1992)
IDP1 (+/+) (+/+) Loftus (1994)
IDP2 (+/+) (+/+) Loftus (1994)
IDP3 (+/+)
KGD1 (+/+) (+/+) Repetto (1991)
KGD2 (+/+) (+/+) Repetto (1991)
LPD1 (+/+)
LSC1 (+/+) (+/+) (+/+) Prz ybyla (1998)
LSC2 (+/+) (+/+) (+/+) Przybyla (1998)
MAE1 (+/+) (+/+) (+/+) Boles (1998)

Gene name
defined 

complete Glc
defined minimal 

Glc
defined minimal 

Ace
defined minimal 

Eth
(in silico/in 

vivo )
(in silico/in 

vivo )
(in silico/ in 

vivo )
(in silico/ in 

vivo)
References: 

(for minimal media)
ACO1 (+/+) (-/-) Ga ngloff (1990)
CDC19# (+/ -) (+/ -) Boles (1998)

CIT1 (+/+) (+/+) Kim (1986)

CIT2 (+/+) (+/+) Kim (1986)
CIT3 (+/+)

DAL7 (+/+) (+/+) (+/+) (+/+) Hartig (1992)

ENO1 (+/+)
ENO2$$ (+/ -) (+/ -)

FBA1* (+/ -) (+/ -)

FBP1 (+/+) (+/+) (-/-)
Sedivy (1985), Gancedo 

(1984)
FUM1 (+/+)
GLK1

Gene name
defined 

complete Glc
defined minimal 

Glc
defined minimal 

Ace
defined minimal 

Eth
(in silico/in 

vivo )
(in silico/in 

vivo )
(in silico/ in 

vivo )
(in silico/ in 

vivo)
References: 

(for minimal media)
ACO1 (+/+) (-/-) Ga ngloff (1990)
CDC19# (+/ -) (+/ -) Boles (1998)

CIT1 (+/+) (+/+) Kim (1986)

CIT2 (+/+) (+/+) Kim (1986)
CIT3 (+/+)

DAL7 (+/+) (+/+) (+/+) (+/+) Hartig (1992)

ENO1 (+/+)
ENO2$$ (+/ -) (+/ -)

FBA1* (+/ -) (+/ -)

FBP1 (+/+) (+/+) (-/-)
Sedivy (1985), Gancedo 

(1984)
FUM1 (+/+)
GLK1 (+/+)
GND1## (+/ -) (+/ -)
GND2 (+/+)
GPM1|| (+/ -) (+/ -)
GPM2 (+/+)
GPM3 (+/+)
HXK1 (+/+)
HXK2 (+/+)
ICL1 (+/+) (+/+) Smith (1996)
IDH1 (+/+) (+ /+) Cupp (1992)
IDH2 (+/+) (+/+) Cupp (1992)
IDP1 (+/+) (+/+) Loftus (1994)
IDP2 (+/+) (+/+) Loftus (1994)
IDP3 (+/+)
KGD1 (+/+) (+/+) Repetto (1991)
KGD2 (+/+) (+/+) Repetto (1991)
LPD1 (+/+)
LSC1 (+/+) (+/+) (+/+) Prz ybyla (1998)
LSC2 (+/+) (+/+) (+/+) Przybyla (1998)
MAE1 (+/+) (+/+) (+/+) Boles (1998)

(+/+)
GND1## (+/ -) (+/ -)
GND2 (+/+)
GPM1|| (+/ -) (+/ -)
GPM2 (+/+)
GPM3 (+/+)
HXK1 (+/+)
HXK2 (+/+)
ICL1 (+/+) (+/+) Smith (1996)
IDH1 (+/+) (+ /+) Cupp (1992)
IDH2 (+/+) (+/+) Cupp (1992)
IDP1 (+/+) (+/+) Loftus (1994)
IDP2 (+/+) (+/+) Loftus (1994)
IDP3 (+/+)
KGD1 (+/+) (+/+) Repetto (1991)
KGD2 (+/+) (+/+) Repetto (1991)
LPD1 (+/+)
LSC1 (+/+) (+/+) (+/+) Prz ybyla (1998)
LSC2 (+/+) (+/+) (+/+) Przybyla (1998)
MAE1 (+/+) (+/+) (+/+) Boles (1998)

Gene Deletion Study

Genome-Wide Gene 
Deletion Studies:

85.6% agreement in 
knockout viability 

(499 out of 583 cases)

Central Metabolism:

81.5% agreement in 
knockout viability (93 

out of 114 cases)

(+/ -) (growth/ no growth)
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Model Applications
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Two Facets: Computational and 
Experimental

Genome Sequence
Information

In vitro/in vivo 
characteristics

Added Network
Function

in silico -based
hypothesis

in silico
Microbial Model

Prediction

Refinement

Computational
Experiment

Revised ORF
Annotations

Inferred Metabolic
Capabilities

Biochemical
Experiment

Genome Sequence
Information

In vitro/in vivo 
characteristics

Added Network
Function

in silico -based
hypothesis

in silico
Microbial Model

Prediction

Refinement

Computational
Experiment

Revised ORF
Annotations

Inferred Metabolic
Capabilities

Biochemical
Experiment

We now elaborate that this iterative model building can occur 
via two routes: experimental and computational.  Here is a diagram of a 
model-centric discovery process.  The model is used to make predictions 
which are basically in silico-based hypotheses which must be tested.  If the 
predictions are tested experimentally, the result is the determination of new 
metabolic capabilities; if the predictions are tested computationally, the result 
is a revised ORF annotation.  In either case, network functions are added and 
the model is improved, leading to new, more accurate predictions, and so on.

We can illustrate both arms of this process using our experience
from the H. pylori model.  
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Computational: H. Pylori Sequence Analysis 
(BLAST)

HP Locus Organism Gene Product Name Similarity Identity
HP0086 Corynebacterium glutamicum Malate dehydrogenase 36.81% 25.93%
HP0104 Escherichia coli 5'-Nucleotidase 36.71% 25.76%
HP0133 Escherichia coli Threonine transporter 50.00% 33.33%
HP0192 Synechocystis sp. Aspartate oxidase 42.08% 30.94%
HP0328 Francisella novicida Tetraacyldisaccharide 4’ kinase 42.34% 29.20%
HP0474 Synechococcus sp. (strain PCC 7942) Sulfate transporter 38.81% 26.48%
HP0561 Leishmania tarentolae Dihydrofolate reductase 39.59% 30.20%
HP0618 Sus scrofa (Pig) Cytidylate kinase 41.40% 30.65%
HP0672 Schizosaccharomyces pombe Alanine transaminase 35.54% 25.73%
HP0723 Pseudomonas sp. (strain 7A) Glutaminase 54.57% 44.51%
HP0940 Campylobacter jejuni Histidine transporter 40.41% 29.80%
HP0976 Escherichia coli Ornithine transaminase 39.17% 27.74%
HP1017 Salmonella typhimurium asparagine transport protein 43.86% 32.63%
HP1017 Escherichia coli Lysine transporter/permease 49.25% 37.10%
HP1017 Escherichia coli Phenlyalanine transporter 44.20% 30.64%
HP1017 Saccharomyces cerevisiae Tryptophan transporter 40.68% 31.94%
HP1045 Staphylococcus aureus O-Succinylbenzoate-CoA ligase 33.95% 23.66%
HP1232 Pneumocystis carinii dihydroneopterin aldolase 41.02% 28.15%
HP1282 Pseudomonas aeruginosa Isochorismate synthase 1 32.58% 21.80%

Enzymes included in the in silico H. pylori  strain without direct evidence, with locus 
numbers of ORFs with significant similarity to genes encoding these enzymes in other organisms.

•Many of the above HP loci have already been assigned functions w hich are similar to 
those included in the in silicostrain (rocE, transaminase).

HP Locus Organism Gene Product Name Similarity Identity
HP0086 Corynebacterium glutamicum Malate dehydrogenase 36.81% 25.93%
HP0104 Escherichia coli 5'-Nucleotidase 36.71% 25.76%
HP0133 Escherichia coli Threonine transporter 50.00% 33.33%
HP0192 Synechocystis sp. Aspartate oxidase 42.08% 30.94%
HP0328 Francisella novicida Tetraacyldisaccharide 4’ kinase 42.34% 29.20%
HP0474 Synechococcus sp. (strain PCC 7942) Sulfate transporter 38.81% 26.48%
HP0561 Leishmania tarentolae Dihydrofolate reductase 39.59% 30.20%
HP0618 Sus scrofa (Pig) Cytidylate kinase 41.40% 30.65%
HP0672 Schizosaccharomyces pombe Alanine transaminase 35.54% 25.73%
HP0723 Pseudomonas sp. (strain 7A) Glutaminase 54.57% 44.51%
HP0940 Campylobacter jejuni Histidine transporter 40.41% 29.80%
HP0976 Escherichia coli Ornithine transaminase 39.17% 27.74%
HP1017 Salmonella typhimurium asparagine transport protein 43.86% 32.63%
HP1017 Escherichia coli Lysine transporter/permease 49.25% 37.10%
HP1017 Escherichia coli Phenlyalanine transporter 44.20% 30.64%
HP1017 Saccharomyces cerevisiae Tryptophan transporter 40.68% 31.94%
HP1045 Staphylococcus aureus O-Succinylbenzoate-CoA ligase 33.95% 23.66%
HP1232 Pneumocystis carinii dihydroneopterin aldolase 41.02% 28.15%
HP1282 Pseudomonas aeruginosa Isochorismate synthase 1 32.58% 21.80%

Enzymes included in the in silico H. pylori  strain without direct evidence, with locus 
numbers of ORFs with significant similarity to genes encoding these enzymes in other organisms.

•Construction of in silicostrains can direct bioinformaticists and experimentalists in more 
complete genome annotation (malate dehydrogenase)

HP Locus Organism Gene Product Name Similarity Identity
HP0086 Corynebacterium glutamicum Malate dehydrogenase 36.81% 25.93%
HP0104 Escherichia coli 5'-Nucleotidase 36.71% 25.76%
HP0133 Escherichia coli Threonine transporter 50.00% 33.33%
HP0192 Synechocystis sp. Aspartate oxidase 42.08% 30.94%
HP0328 Francisella novicida Tetraacyldisaccharide 4’ kinase 42.34% 29.20%
HP0474 Synechococcus sp. (strain PCC 7942) Sulfate transporter 38.81% 26.48%
HP0561 Leishmania tarentolae Dihydrofolate reductase 39.59% 30.20%
HP0618 Sus scrofa (Pig) Cytidylate kinase 41.40% 30.65%
HP0672 Schizosaccharomyces pombe Alanine transaminase 35.54% 25.73%
HP0723 Pseudomonas sp. (strain 7A) Glutaminase 54.57% 44.51%
HP0940 Campylobacter jejuni Histidine transporter 40.41% 29.80%
HP0976 Escherichia coli Ornithine transaminase 39.17% 27.74%
HP1017 Salmonella typhimurium asparagine transport protein 43.86% 32.63%
HP1017 Escherichia coli Lysine transporter/permease 49.25% 37.10%
HP1017 Escherichia coli Phenlyalanine transporter 44.20% 30.64%
HP1017 Saccharomyces cerevisiae Tryptophan transporter 40.68% 31.94%
HP1045 Staphylococcus aureus O-Succinylbenzoate-CoA ligase 33.95% 23.66%
HP1232 Pneumocystis carinii dihydroneopterin aldolase 41.02% 28.15%
HP1282 Pseudomonas aeruginosa Isochorismate synthase 1 32.58% 21.80%

Enzymes included in the in silico H. pylori  strain without direct evidence, with locus 
numbers of ORFs with significant similarity to genes encoding these enzymes in other organisms.

First, computationally.  For each of the reaction predictions which were low-
confidence, based on either physiology alone or inference, we assumed that the 
genes might be found in the H. pylori genome.  Accordingly, we searched for 
these hypothetical genes using a BLAST search and found that a potential 
locus could be found which had significant similarity to corresponding genes 
in other organisms.  Some of the results are shown here.  These results 
represent a possibility which can be explored further.  

The first thing that we noticed is that many of the above HP loci 
have already been assigned functions which are similar to those included in the 
in silico strain.  For example, many amino acid transport proteins showed
similarity to the rocE gene on HP1017, which encodes an “amino acid 
permease”.  More research could indicate which amino acids in fact use this 
permease.

Another important finding has to do with malate dehydrogenase
and will be discussed on the next slide.
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HP Locus Organism Gene Product Name Similarity Identity
HP0086 Corynebacterium glutamicum Malate dehydrogenase 36.81% 25.93%
HP0104 Escherichia coli 5'-Nucleotidase 36.71% 25.76%
HP0133 Escherichia coli Threonine transporter 50.00% 33.33%
HP0192 Synechocystis sp. Aspartate oxidase 42.08% 30.94%
HP0328 Francisella novicida Tetraacyldisaccharide 4’ kinase 42.34% 29.20%
HP0474 Synechococcus sp. (strain PCC 7942) Sulfate transporter 38.81% 26.48%
HP0561 Leishmania tarentolae Dihydrofolate reductase 39.59% 30.20%
HP0618 Sus scrofa (Pig) Cytidylate kinase 41.40% 30.65%
HP0672 Schizosaccharomyces pombe Alanine transaminase 35.54% 25.73%
HP0723 Pseudomonas sp. (strain 7A) Glutaminase 54.57% 44.51%
HP0940 Campylobacter jejuni Histidine transporter 40.41% 29.80%
HP0976 Escherichia coli Ornithine transaminase 39.17% 27.74%
HP1017 Salmonella typhimurium asparagine transport protein 43.86% 32.63%
HP1017 Escherichia coli Lysine transporter/permease 49.25% 37.10%
HP1017 Escherichia coli Phenlyalanine transporter 44.20% 30.64%
HP1017 Saccharomyces cerevisiae Tryptophan transporter 40.68% 31.94%
HP1045 Staphylococcus aureus O-Succinylbenzoate-CoA ligase 33.95% 23.66%
HP1232 Pneumocystis carinii dihydroneopterin aldolase 41.02% 28.15%
HP1282 Pseudomonas aeruginosa Isochorismate synthase 1 32.58% 21.80%

Enzymes included in the in silico H. pylori  strain without direct evidence, with locus 
numbers of ORFs with significant similarity to genes encoding these enzymes in other organisms.

Network Reconstruction as a Predictive 
Science: Malate dehydrogenase

in silico Prediction:
The H. pylori Network includes a malate dehydrogenase function

L-Malate + NAD+ V Oxaloacetate + NADH +H+

Computational Investigation:
BLAST search indicates the presence of a Malate:Quinone 
Oxidoreductase (MQO) in C. glutamicum with significant similarity 
(36.81%) and identity (25.93%) to locus HP0086 in H. pylori.

Biochemical Verification:
Kather et.al. (J Bact, June 2000) demonstrate MQO activity of 
locus HP0086 in H. pylori

One case where the locus was explored further and produced a 
significant hit was the case of malate dehydrogenase in H. pylori.
Construction of the model indicated the presence of this enzyme although no 
evidence was found in the genome or biochemically.  Our BLAST search 
indicated the presence of a Malate:Quinone Oxidoreductase (MQO) in C. 
glutamicum with significant homology to locus HP0086 in H. pylori.  The 
activity of the HP0086 gene product was later verified to be that of 
malate:quinone oxidoreductase in an independent study.  This shows that 
network reconstruction can be a predictive tool in its own right.
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Experimental: a more palatable H.
pylori and the peer-review process

Our H. pylori 
manuscript 
received two 
detailed 
biologically-
oriented peer 
reviews 
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Our H. pylori model also underwent experiment-based model-
building via the peer-review process.  Our model was the beneficiary of two 
very detailed and biologically-oriented peer reviews – each one several pages 
worth!
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Reviewer comments which helped

• frd – should be 
reversible

• Adenine 
biosynthesis 
pathway should 
be included 
(based on 
physiology)
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Some of the comments were very helpful evaluations.  For 
example, one reviewer commented that the frd gene product (fumarate
reductase, as was mentioned earlier) is thought to be reversible in H. pylori, 
noting that the organism could utilize succinate.  Another encouraged us to 
include adenine biosynthesis enzymes in the model although they had not been 
characterized or found in the genome, due to the ability of H. pylori to grow in 
the absence of purines.  The incorporation of these (and other) “reconstructive 
criticisms” led to more accurate model predictions.
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Reviewer comments which opened 
new questions: malate synthase

• “aceB is probably 
incorrect annotation” 
(no aceA)

• But aceB is essential 
in silico for degrade 
folate biosynthesis 
products!

• Further 
experimentation 
necessary 
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In other cases, the reviewer comments opened new questions 
which should be examined further.  One of these was the case of malate
synthase.  Malate synthase, encoded for by the aceB gene, is the second half of 
the glyoxylate shunt.  Because the first half is thought not to be present in the 
system and because aceB has only been found in the genome, one reviewer 
said that the aceB annotation was probably incorrect.  However, in our 
calculations we found that aceB was essential under all conditions for growth 
– but this was due to the production of glyoxylate as a by-product of folate
biosynthesis.  The aceB was required to keep glyoxylate from accumulating.  
This is a non- intuitive use of the malate synthase enzyme which was only 
identified by systems analysis and shows the potential of these models to drive 
discovery!
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Model Applications – an Overview
Extreme Pathway Analysis
• Identify reaction subsets (i.e., reactions which are always used together)

- Possible operon/regulon structure
• Identify unused reactions (i.e., “dead-ends”)

- Places where further discovery or evaluation needs to take place
• Give insight into network structure

Flux-Balance Analysis
• Gene knockout/mutant studies and robustness

- Possible antibiotic targets
• Prediction of growth experiments, evolutionary trajectories, etc.

Recent Developments in Analysis
• Singular Value Decomposition (SVD) analysis

- Overall network properties
• Regulated Flux Balance Analysis (rFBA)

- in silico Array studies, time courses of growth

These models have been used in many clever ways, which will be covered in 
detail later on. For example, Extreme Pathway Analysis (EPA) maybe used to 
identify reaction subsets which are always found active together in 
simulations.  These may point to genes which are regulated together, whether 
in operons or regulons.  EPA may also be used to identify reactions in the 
network which are never active.  These indicate either that such genes would 
be expected to be lost in evolution or where further discovery or evaluation 
needs to take place.  EPA may also give insight into network structure, as will 
be explained later.

Flux-Balance Analysis (FBA) is used to analyze gene 
knockout/mutant studies, which is useful for metabolic engineering, or for 
pathogens, identifying possible antibiotic targets.  FBA may also be used to 
predict growth experiments, evolutionary trajectories, and the like.  

Finally, there have been several recent developments in analysis
approaches, such as Singular Value Decomposition and the construction and 
incorporation of transcriptional regulatory networks, which bring further 
insight into microbial behavior and systems properties.
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Summary

• Metabolic networks can be incorporated into genome-scale 
models which simulate cellular behavior

• In silico metabolic models exhibit the same network 
characteristics as in vivo

• Growth, metabolite uptake rates, and byproduct secretion 
rates may be quantitatively predicted for aerobic and 
anaerobic growth by imposing environmental and 
regulatory constraints

• In silico models can be used to analyze, interpret, and 
predict knockout viability of metabolic genes
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