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The Intracellular
Environment is

Very Complex:
How do we
construct models at
a genome-scale?

From The Machinery of Life aad o g { relia ',"’-‘.':f:'.l:..'.:'
David S. Goodsell, [ L gy
Springer-Verlag, New York, 1993. Rl
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The Intracellular Environment

The above figure depicts the crowded environment that results from having
30% biomass. The depiction of the intracellular environment shown here is
very helpful when trying to formulate a strategy on how to go about
mathematically modeling and simulating this very complex environment.



What isin areconstruction?

Genome: Transcription/transl ation:
Annotated genes Gene to transcript to protein to
Genelocation reaction association
Regulatory regions Transcript half-lives
Woabble base pairs tRNA abundances

Ribosomal capacities

Biochemistry: Physiology:
Stereochemistry Flux data
pH and pKa (charge) Knock-outs
Elemental balance Balanced functions
Charge balance Overall phenotypic behavior

Multiple reactions/enzyme L ocation of gene product
Multiple enzymes/reaction compartmentalization
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WHAT ISIN A RECONSTRUCTION?

There are numerous sources we use in a metabolic reconstruction. The first type of datawe use relates
to an organism’ s genome. For example, genome annotations provide useful insight into potential
functional assignments of open reading frames. Gene location may be provide insight into the way a
geneisexpressed. It isalso important for understanding the regulatory structure that controls this
expression. By studying the known effects of repressors and activators, we can implement rules to
describe agene’ sregulation. Our lab is also interested in wobble base pairs, which may lead to clues
about an organism’ s protein composition.

Another source of information is biochemical data. Stereochemistry, pH, and pKa are all important in
determining the exact state of compounds that are involved in the reactions within the organism. We
also must consider the elemental and charge balance of these reactions, which are known to hold truein
vivo. Finally, we are also concerned with the association between enzymes and reactions, such as
identifying isozymes and protein complexes.

We also consider transcription and translation in a metabolic reconstruction. It isimportant to
understand the associ ations between genes, proteins, and reactions in order to properly characterize
these processes. The half-lives of transcripts, tRNA abundancies, and ribosomal capacities all impact an
organism’s protein composition.

Finally, physiological dataisrequired to understand the network as awhole. Flux data and knock-outs
are useful for testing our modelsin their prediction of phenotypic behaviors. We can also use
physiological datafor the model development, such asidentifying the compartmental |ocation of a
particular gene product.



Status of Genome-Scale Models

Reconstruction of metabolic models is routine
— Have severa predictive bacterial models
— First eukaryotic model built
— First draft to human model emerging

QOrganism Reactions | Metabolites
Escherichia coli (core) 14 17
Escherichia coli 146 118
Escherichia coli 317 305
Haemophilus influenzae 488 343
Escherichia coli (v1.0) 720 436
Helicobacter pylori 388 339
Escherichia coli (regulated) 113 63
Saccharomyces cerevisiae 1294 801
Escherichia coli (v1.1) 1043 594
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Gathering biological data and using it to reconstruct metabolic modelsisroutine.
We have build several predictive bacterial models such as E. coli, H. influenzae, and
H. pylori [point out in table] and our first eukaryotic model, S. cerevisiae [point out in
table].

We have aready laid the groundwork for reconstructing regulatory networks and
incorporating them into our metabolic models. In fact, we have begun to test a
regulated E coli network and have started to implement regulatory rules in yeast.

Finally, we have just begun to reconstruct signaling networks, such as the JAK-STAT
pathway in yeast.



Genome-scalein silico model s of

Escherichia coli
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E. Coll a aGlance

E. cali isa Gram: negative
bacterium

It is a prokaryote and belongs to
the family Enterobacteria.

It is awedl-studied organismin
terms of its metabolism and
regulation.

There are currently 3 DNA

sequenced strains of E. coli:
— K12: MG1655
— 0157:H7 EDL933
— 0157:H7 VT2-Sakal
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E. coli isa Gram-negative bacteria. It is a prokaryote belonging to the family
Enterobacteria. E. coli has been studied physiologically and biochemically for along
time. Its metabolism and regulation are more characterized thanother bacteria. There
are many different strains of E. coli. Three strains have been fully sequenced and
annotated, K12:MG1655 in 1997, and O157:H7 in 2001.



Development of the E. coli Model
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“Thirteen years of constraint-based model building of E. coli” JBact, May 2003

University of California, San Diego Systems Biology Research Group
Department of Bioengineering http://systemsbiol ogy.ucsd.edu

The development of successive constraint-based FBA models of E. coli. Constraint-
based models of E. coli first focused on metabolism. By the time the complete
genome was sequenced (1997), only 26% of metabolic genes were accounted for in
the FBA models. Over the next 5 years the number grew to include nearly 80% of the
metabolic genes. Methods for incorporating transcriptional regulation have been
developed and implemented in the core metabolic model of E. coli, as have methods
for including protein synthesis. Expanding the regulatory and protein synthesis models
to the genome scale can be accomplished by using the information that is known

today (indicated in dotted lines). Further gene annotations should increase the size of
models (dashed lines). These three components can be combined to form an integrated
model that accounts for nearly 2,000 genes.



Model Milestones

1. Varma Model (146 Rxns)
FBA and Linear Optimization (I1.11)
Growth as an Objective Function
Dynamic Growth Simulation (11.16)

2. Edwards Model (720 Rxns)
Gene Deletion Studies (11.13)
Phase Plane Analysis (11.14)
Robustness Analysis (11.13)
Experimental Comparisons (11.15)

Covert Model (113 Rxns)

2002 Reed Model (947 Rxns)
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The first genome-scale model of E. coli was reconstructed in 2000 from genomic,
biochemical, and physiological data. The model contained 720 reactions, associated
with metabolism and transport. Again most of the results from this model have
already been presented throughout the course. Gene deletion studies were performed;
the model was found to correctly predict the in vivo results in 86% of the cases
studied. The model has been extensively used in calculating phase planes for various
carbon sources. Experiments have been performed validating the predictive
capabilities of the model, see topic I1.15. An example will be shown on the next dide.



Predicted Growth and Secretion Rates
(Aerobic Batch Culture)
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Shown here is atime course for an aerobic batch culture of E. coli grown on glucose
minimal media. Glucose is being consumed to make biomass and acetate is being
secreted as a by-product. When glucose is depleted the acetate is take up and utilized.
The curves represent the model predictions based on the equatiors shown.
Experimental data points are also shown. Thereis a good agreement between the
model and experimental data. The model does not predict the time lag associated with
reabsorption of acetate since gene expression and protein synthesis are not
incorporated into the model.
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Phase Plane Analysis

» Calculated the following Phase Planes. Glucose,
AKG, Glyceral, Acetate, Pyruvate, Maate,
Succinate, and Lactate.

Results; Glucose, Pyruvate, Succinate, Malate,
Acetate, Glycerol* and Lactate phase planes (2D
and 3D) appear to be the same. Biomassyields do
not change. AKG was the only one that was
different.

*Glycerol was the same only after deletion of katG and katE genes

University of California, San Diego Systems Biology Research Group
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A comparison of the phenotypic phase planes between models yielded minor
differences. Originally the new phase plane for glycerol was different, but after
looking at calculated flux distributions it was decided that katG and katE (that were
added to the old model) , which encode hydroperoxidase (2 H202 ? O2 +H20)
should be removed. The model predicted an high flux through some of the vitamin
B6 pathways creating a cycle that produced H202. With katG and katE present, the
model predicted that this cycle would operate along with the hydroperoxidase enzyme
to generate or consume O2. The final version of the new model (v1.1) didn’t have the
katG and katE enzymes.

After removal of the hydroperoxidase from the new model, the phase planes for
glucose, pyruvate, succinate, malate, acetate, glycerol and lactate the phase planes
were identical to those generated by v1.01. a-ketoglutarate (AKG) was the only
carbon source tested whose phase plane changed.

11



Succinate 3-D Phenotype Phase Plane
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This figure, shows the Succinate-oxygen PhPP in three dimensions.
*The formalism is similar to the 3-D acetate PhPP

*Here the effect of the carbon source on the structure of the PhPP can be seen.

*The LO is shown here, and the data points with reduced succinate uptake
rates al lie on (or near) the LO,

*However, when the succinate uptake rate was increased, the experimental
data followed the LO until the oxygen mass transfer constraint was reached.
At this point, the growth rate and the succinate uptake were increased by
moving into region 2 of the phase plane.

12



E. coli does evolve towards
stoichiometric optimality

University of California, San Diego

Systems Biology Research Group
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When E. coli was grown on glycerol, the cells initialy exhibited sub-optimal growth
behavior. They operated in region 1 of the phase plane where futile cycles are being
used. Seria batch cultures were performed and the cells evolved towards the line of
optimality that was predicted a priori in silico.
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Integrated Model of E. coli
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Integrated constraint-based model of E. coli: the E. coli i2K model. Constraint-based
modeling frameworks have been developed for metabolism, regulation, transcription,
and trandation. The connectivity among the three modeling componentsis shown
here. Integration of these three modeling components should produce an integrated
model of E. coli that accounts for nearly 2,000 genes, referred to as the E. coli i2K
model. This model can be used to reconcile diverse “-omics” data and utilize the data
to more accurately predict a cellular phenotype.
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Combined Regulatory/Metabolic Modeling
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COMBINED REGULATORY AND METABOLIC MODELING

This dide shows what kind of calculations are possible using the regulated flux
balance approach and the regulated E. coli metabolic network in a simulation
of the glucose-lactose diauxic shift. Using this approach it is possible to
generate time courses of growth as well as glucose and lactose yotake. Itis
also possible to infer concentrations of proteins and even to simulate,
gualitatively, gene expression data. We can also simulate the effects of gene
deletions on cellular behavior with more accuracy and broader scope.



A Genome-Scalein silico Model of
Saccharomyces cerevisiae
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S cerevisiae at a Glance

Genome Char acteristic b#} o o
Fully sequenced in 1996 - » %‘56
12,052 Kbp genome length 5 o
6,259 ORF, ~4,300 functionally known genes £ ;
Applications
Medicine: production of insulin
Industry: proteins for feedstock enrichment, glycerol, food additives, etc.
Domestics: winery, brewery, and bakery

The Model Eukaryotic Organism
Well studied genetic, metabolic, and regulatory biology
Easy to grow and manipulate
Basis for studying more complex eukaryotes
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The genome of Saccharomyces cerevisiae was fully sequenced, annotated, and
became available to the public in 1996. The length of the genome is about 12
mega base-pair and it contains about 6300 open reading frames of which about
4300 have known annotation based on genetics, biochemistry, or homology.

S cerevisiae has numerous applications in medicine, for instance in production
of pharmacological proteins such as insulin; in industry in mass-production of
various proteins and food additives; and it has along history in domestics in
production of acoholic beverages and bakery, which make it the oldest
microorganism studied by humans.

S. cerevisiae has been chosen by the scientific community as the model
eukaryotic organism for several reasons. Its genetic, metabolic, and regulatory
biology iswell studied and well understood. Its relatively simplistic biology
and the easiness in manipulating its genetic composition makes it attractive to
work with and convenient to grow in laboratories. Studying and understanding
the biology and physiological behavior of this organism can therefore be the
basis for understanding more complex eukaryotic organisms such as human
cels.

17



Network Characteristics

S. Cerevisiae Metabolic Network
Genes
M etabolites{total)
M etaboticreactions (total)
cytosolic reactions
mitochondrial reactions
exchange fluxes
cytosolic:exchangefluxes
mitochondrial exchange fluxes
Reactions with ORF assignments

University of California, San Diego Systems Biology Research Group
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The yeast in silico model is composed of 697 genes, 868 metabolites, and 1212
reactions, of which 131 occur in mitochondria, 725 in cytosol, and 356 are
exchange fluxes across the mitochondrial and cytocolic membrane. The genes
included in the model constitute about 16% of the known genes in the genome
and 58.7% of the known metabolic genes.
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Anaerobic Glucose-Limited
Continuous Culture

Glucose Uptake Rate of an Anaerobically Grown S.
cerevisiae
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Aerobic Glucose-Limited
Continuous Culture =
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Aerobic Glucose-Limited
Continuous Culture =

Biomass Yield, and Secretion Rates of Ethanol
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Gene Deletion Study
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Model Applications
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Two Facets. Computational and
Experimental

in silico-based Y.

hypothesis e,

ACA Biochemical

Experiment HE Experiment
¢ Prediction .

v

7 Invitrofin vivo Y
N Microbial Model A characteristics 4

< Refinement
Revised ORF Inferred Metabolic

Annotations Czlapabilities

'Added Network ‘
Function
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We now elaborate that this iterative model building can occur
viatwo routes: experimental and computational. Hereisadiagram of a
model-centric discovery process. The model is used to make predictiors
which are basically in silico-based hypotheses which must be tested. If the
predictions are tested experimentally, the result is the determination of new
metabolic capabilities; if the predictions are tested computationally, the result
isarevised ORF annotation. In either case, network functions are added and
the model is improved, leading to new, more accurate predictions, and so on.

We can illustrate both arms of this process using our experience
from the H. pylori mode.

24



Computational: H. Pylori Sequence Analysis
(BLAST)

Enzymes imdudrstimttred mslicoo-H pyosiistminvithhutiddreicewdieneravitht loritsus
nAumbers of ORFs with sigmifiicanitsimilaiitwtcoapaesseacosingd heeeeaay A 4N P tiAC K RISISH S

HP Leuss Q@apaissm GesadroducichNamee Sigitariyty Ideasityity
HP0086 Conymeltacteriium gjlutemigum Mélzte eleleyyrogeasese 3638186% 2528398%
HP0104 Eseftesichisacolili 5'5Nneleiiassse IBBIMY 282B6¥%
HPO133 Esttezicbidacotli Thteeninadraassmoerer 500006% 33333%8%
HP0192 Synechasystissm. Asparaiaexilasese 42/08%% 3009494%
HP0328 Frenuisstionoviciida Tegnaeayyltisacoanded Kikasse  4242434% 22P096%
HP0474  Symechocsttus sp. (straim FCC 7842) SHlite ¢ransporater 38818% 2024898%
HP0561 LLeiatmenicatcaeamoiiee Diipigichfcfialet eeduitaisese 3%85%8% 30320 Y%
HPO618 Susssoroiéa(fi) Optitylatetkinasese 4440%% 3036686%
HP0672 SchizossedEamyeesspoomitee Aldpiniedrasswamassse 33584% 252B3Y8%
HPO723 PsebnurRasspp (SEUmiAR) Ghitsdminigse SELTEY 443194 %
HP0840 Canmbsteigini Hitigtitiearansppeder A0H145% 2928080 %
HIPOS76 Esutenittiéaconli Ornfilrieeranseainigse 3BITWEN 2727478 %
HP1017 Setra MM aspaeigmisertiasseebURiAin  4318636% 386398%
HP1017 Esutieridhiaconli Liypisarsaeppasgppenaease  4919526% 3BT0W%
HP1017 Esteeicbhiacom|i PRBANRIANGerdrRpRRter 4443000% 3036466 %
HP1017 Santhamnyessagaiisiae THypiphhamtasseeser 4046808%  31394964%
HP104% StigHyrieerendsaneis o-stueripibarsanicoptidamse  3BGEYWY 2266667
HP1232 PRaRRS)sHascanini difuFABepRIAHAIalIakse 414878% 282855 %
HP1282 Psidbmepassenigiiosa |d6eRbristaRiayhagse 1 3BBEIRY 2128080 %

*Many of the above HP loci have already been assigned functions w hich are similar to
those included in the in silicostrain (rocE, transaminase).

*Construction ofin silicostrains can direct bioinformaticists and experimentalists in more
complete genome annotation (malate dehydrogenase)

University of California, San Diego Systems Biology Research Group
Department of Bioengineering http://systemsbiol ogy.ucsd.edu

First, computationally. For each of the reaction predictions which were low-
confidence, based on either physiology alone or inference, we assumed that the
genes might be found in the H. pylori genome. Accordingly, we searched for
these hypothetical genes using a BLAST search and found that a potential
locus could be found which had significant similarity to corresponding genes
in other organisms. Some of the results are shown here. These results
represent a possibility which can be explored further.

The first thing that we noticed is that many of the above HP loci
have already been assigned functions which are similar to those included in the
in silico strain. For example, many amino acid transport proteins showed
similarity to the rocE gene on HP1017, which encodes an “amino acid
permease’. More research could indicate which amino acids in fact use this
permease

Another important finding has to do with mal ate dehydrogenase
and will be discussed on the next slide.
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Network Reconstruction as a Predictive
Science: Malate dehydrogenase

Enzymesincluded inthe in silico H. pylori strain without direct evidence, with locus
numbers of ORFs with significant similarity to genes encoding these enzymes in other organisms.

HP Locus Organism Gene Product Name Similarity  Identity

HP0086 Corynebacterium glutamicum Malate dehydrogenase 3681%  25.93%

HP0104 Escherichia coli 5-Nucleotidase 3671%  25.76%

HP0133 Escherichia coli Threonine transporter 5000%  33.33%

HP0192 Synechocystis sp. Aspartate oxidase 4208%  30.94%

. ops - . 4234% 29.20%
insilico Prediction: 3881%  26.48%

395%  30.20%

The H. pylori Network includes a malate dehydrogenase function  [paeysss
L-Malate + NAD* V Oxaloacetate + NADH +H* oo BT
4041% 29.80%

Computational Investigation: do1me  27.74%

BLAST search indicates the presence of a Malate:Quinone s

Oxidoreductase (MQO) in C. glutamicum with significant similarityfgemess:

(36.81%) and identity (25.93%) to locus HPO086 in H. pylori. oy e
32:58% 21:80%

Biochemical Verification:
Kather et.al. (J Bact, June 2000) demonstrate MQO activity of
locus HPOO86 in H. pylori

University of California, San Diego Systems Biology Research Group
Department of Bioengineering http://systemsbiol ogy.ucsd.edu

One case where the locus was explored further and produced a
significant hit was the case of malate dehydrogenase in H. pylori.
Construction of the model indicated the presence of this enzyme athough no
evidence was found in the genome or biochemically. Our BLAST search
indicated the presence of a Malate:Quinone Oxidoreductase (MQO) inC.
glutamicum with significant homology to locus HPO086 in H. pylori. The
activity of the HPO086 gene product was later verified to be that of
malate:quinone oxidoreductase in an independent study. This shows that
network reconstruction can be a predictive tool in its own right.



Experimental: a more palatable H.
pylori and the peer-review process

H. pylori Central Metabolic Subsystem
iy

Our H. pylori
manuscript
received two
detailed
biologically-
oriented peer
reviews

University of California, San Diego Systems Biology Research Group
Department of Bioengineering http://systemsbiol ogy.ucsd.edu

Our H. pylori model also underwent experiment-based model-
building via the peer-review process. Our model was the beneficiary of two
very detailed and biologically-oriented peer reviews — each one severa pages
worth!
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Reviewer comments which helped

* frd — should be
reversible

* Adenine
biosynthesis
pathway should
be included
(based on

physiology)

University of California, San Diego Systems Biology Research Group
Department of Bioengineering http://systemsbiol ogy.ucsd.edu

Some of the comments were very helpful evaluations. For
example, one reviewer commented that the frd gene product (fumarate
reductase, as was mentioned earlier) is thought to be reversible in H. pylori,
noting that the organism could utilize succinate. Another encouraged us to
include adenine biosynthesis enzymes in the model although they had not been
characterized or found in the genome, due to the ability of H. pylori to grow in
the absence of purines. The incorporation of these (and other) “reconstructive
criticisms’ led to more accurate model predictions.
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Reviewer comments which opened
new guestions. malate synthase

H. pylori Central Metabolic Subsystem
- * “aceB isprobably
! ey incorrect annotation”
J e (no aceA)

» But aceB isessentid

in silico for degrade
folate biosynthesis
products!

* Further
experimentation
necessary

University of California, San Diego Systems Biology Research Group
Department of Bioengineering http://systemsbiol ogy.ucsd.edu

In other cases, the reviewer comments opened new questions
which should be examined further. One of these was the case of malate
synthase. Malate synthase, encoded for by the aceB gene, is the second half of
the glyoxylate shunt. Because the first half is thought not to be present in the
system and because aceB has only been found in the genome, one reviewer
said that the aceB annotation was probably incorrect. However, in our
calculations we found that aceB was essential under all conditions for growth
— but this was due to the production of glyoxylate as a by-product of folate
biosynthesis. The aceB was required to keep glyoxylate from accumulating.
Thisis a nor-intuitive use of the malate synthase enzyme which was only
identified by systems analysis and shows the potential of these modelsto drive
discovery!
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Model Applications — an Overview

Extreme Pathway Analysis

 |dentify reaction subsets (i.e., reactions which are always used together)
- Possible operon/regulon structure

 |dentify unused reactions (i.e., “ dead-ends”)
- Places where further discovery or evaluation needs to take place

» Giveinsight into network structure

Flux-Balance Analysis
» Gene knockout/mutant studies and robustness
- Possible antibiotic targets
 Prediction of growth experiments, evolutionary trajectories, etc.

Recent Developments in Analysis

» Singular Value Decomposition (SVD) analysis
- Overall network properties

» Regulated Flux Balance Analysis (rFBA)
-insilico Array studies, time courses of growth

University of California, San Diego Systems Biology Research Group
Department of Bioengineering http://systemsbiol ogy.ucsd.edu

These models have been used in many clever ways, which will be covered in
detail later on. For example, Extreme Pathway Analysis (EPA) may be used to
identify reaction subsets which are aways found active together in
simulations. These may point to genes which are regulated together, whether
in operons or regulons. EPA may also be used to identify reactionsin the
network which are never active. These indicate either that such genes would
be expected to be lost in evolution or where further discovery or evaluation
needs to take place. EPA may also give insight into network structure, as will
be explained later.

Flux-Balance Anaysis (FBA) is used to analyze gene
knockout/mutant studies, which is useful for metabolic engineering, or for
pathogens, identifying possible antibiotic targets. FBA may also be used to
predict growth experiments, evolutionary trajectories, and the like.

Finally, there have been several recent developmentsin analysis
approaches, such as Singular Vaue Decomposition and the construction and
incorporation of transcriptional regulatory networks, which bring further
insight into microbia behavior and systems properties.
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Summary

Metabolic networks can be incorporated into genome-scale
models which simulate cellular behavior

In silico metabolic models exhibit the same network
characteristics asin vivo

Growth, metabolite uptake rates, and byproduct secretion
rates may be quantitatively predicted for aerobic and
anaerobic growth by imposing environmental and
regulatory constraints

In silico models can be used to anayze, interpret, and
predict knockout viability of metabolic genes

University of California, San Diego Systems Biology Research Group
Department of Bioengineering http://systemsbiol ogy.ucsd.edu
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