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H-representation:
{x: Ax ≤ b}

V-representation:
convh{v1, …, vp} 

[+ convh{(r1), …, (rq)}]



Transforms H     V

• H → V is the vertex enumeration problem 
(often embedded in face enumeration)

• V → H is a form of the convex hull problem
(Quickhull algorithm is another form)

→←



Convex Hulls

• Easy in 2-space (Graham scan; Jarvis march)

• O(pn/2) in general (maybe just for simplicial polyhedra 
- i.e., every face is a simplex)

Don't explain why it can't be done.
Discover how it can be done.
Mo Tao (404-319 B.C.)



Enumeration of Extreme Points and Extreme Rays

• Double Description Method, based on Fourier-
Motzkin elimination
– ccd, Fukuda;  dda, Padberg

• Reverse Search Algorithm, uses simplex method 
with systematic search over sequence of bases
– lrs, Aris

• All implementations are very limited - about 20 
variables (maybe 30 max)

• We’ll consider “column generation” to avoid explicit 
enumeration while satisfying some criteria



Conversion to Standard form to use Simplex Method

H-representation
Ax ≤ b

Standard form
Ax = b, x ≥ 0, rank(A)=m

[A –A  I] = b
u
v
s

rank = m

Extreme point x 
↔ Basic Feasible Solution

Systematically enumerate all BFSs

B ⊆ {1, …, n} for which |B|=m, 
AB={Aj}j∈B are linearly independent, 

and [AB]–1b ≥ 0

Glitch:  extreme point in enlarged space (u, v, s) is not 
necessarily extreme point in original space (x)
(but pathology does not apply to bounded P).

↔ Ax + s = b, s ≥ 0

↔ Au – Av + s = b, (u, v, s) ≥ 0



Reverse Search

Basic idea:  
1. choose c so that 0 = argmin{cx: Ax ≤ 1, x ≥ 0} (unique)
2. build search tree and reverse the pivots in the simplex method 

⇒ simplex pivot/search tree induced
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Bound on Number of Extreme Points

In standard form, |ext(P)|  ≤ n
m

ext(P) = {(b/a(1), 0, …, 0),  (0, b/a(2), 0, …, 0), …, (0, …, 0, b/a(n))}

a(1)x(1) + a(2)x(2) + x(3) = b
(a(1)x(1) + a(2)x(2) ≤ b)

(b/a(1), 0, 0)(0, 0, b)

(0, b/a(2), 0)

m=1:   a(1)x(1) + a(2)x(2) + … + a(n)x(n) = b,  x ≥ 0
To be bounded, need a > 0 or a < 0 (no mixed signs)
To be full dimensional, need b ≠ 0

So, |ext(P)| = n (i.e., bound is tight for m=1)



Factorials grow exponentially

Stirling’s approximation:  n! ≈ √2π nn+½ e−n

n
mHigh end - m ≈ n/2:

2n+1

= ——
√2πn

n
mLow end - m ≤ 10% n: 

(1+r)n

≈ c ———
√n

: r < ½

m

nn/20

n
m

In standard form, |ext(P)|  ≤ n
m

n!
= ————

m!(n-m)!



Numbers are huge

n

20
30
40
50
100

n
5

1.6 × 104

1.4 × 105

6.6 × 105

2.1 × 106

7.5 × 107

n
6

3.8 × 104

5.9 × 105

3.8 × 106

1.6 × 107

1.2 × 109

n
7

7.8 × 104

2.0 × 106

1.9 × 107

1.0 × 108

1.6 × 1010

n
8

1.3 × 105

5.9 × 106

7.7 × 107

5.4 × 108

1.9 × 1011

n
9

1.7 × 105

1.4 × 107

2.7 × 108

2.5 × 109

1.9 × 1012

n
mm fixed: = O(nm)

nn+½

≈ ———————
m!(n–m)n–m+½ em

100     7.5 × 108 1.2 × 1010 1.6 × 1010 1.9 × 1011 1.9 × 1012

200     2.5 × 109 8.2 × 1011 2.3 × 1013 5.5 × 1014 1.2 × 1015

In standard form, |ext(P)|  ≤ n
m

n!
= ————

m!(n-m)!

order of magnitude not reliable at low end



Numbers are huge

1.73 × 101310100

2.11× 106550

1.61 × 102720200

91,390440

4,060330

190220

n
m

m = 
10% n

n

n
mLow end - m ≤ 10%n: 

(1+r)n

≈ c ———
√n

: r < ½

factoid:  postulated age of universe = 1017 seconds

In standard form, |ext(P)|  ≤ n
m

n!
= ————

m!(n-m)!



Numbers are huge

n
mHigh end - m ≈ n/2:

2n+1

= ——
√2πn

1.0 × 1029100

1.3 × 101450

9.0 × 1058200

1.4 × 101140

1.6 × 10830

1.8 × 10520

n
n/2n≈ 1.5× 10254931

626

In standard form, |ext(P)|  ≤ n
m

n!
= ————

m!(n-m)!

Latest E. coli network:



Bounds are not Counts

What portion of the possible extreme points are in fact present?
How can we find out?

I've been so thoroughly trained that I 
don't even have to think before I speak.



Finding extreme points in V-representation is easy problem

Q: Is vs and extreme point of convh{v1, …, vp}?

A: No iff 0 = min{ws:  w≥ 0,  Σi wi = 1, vs = Σi wivi}.

w = es is feasible

= (0, …, 0, 1, 0, …, 0)
↑
s coordinate

ws = 0 means we have vs = Σi≠s wivi
↔ vs ∈ convh{v1, …, vs–1, vs+1, …, vp}



Inclusion questions

– H-representation: Compute Ax and compare with b
– V-representation:  Is x in convh{vj}?

min w0: x = Σj wjvj + w0x:  w ≥ 0,  Σj=0 wj = 1
= 0 ↔ yes

Is x in P?

– Extension:  If no, give separating hyperplane

‘u in P’ easy for H-
or V-representation

H
x

P
u

wj = |xj–uj| at min

min Σj wj :  w ≥ x–u,  w ≥ u–x, u in P

a = (x–u);  H={v: av=a(x+u)/2}

a



Inclusion questions

Is P∩Q = ϕ?
– min y0: x = Σj yjvj + y0x:  y ≥ 0,  Σj=0 yj = 1, Ax ≤ b 

= 0 ↔ no (x is in P∩Q)

Let P = convh{vj} and Q = {x: Ax ≤ b}

– Extension:  If so, give separating hyperplane

wj = |xj–uj| at min

min Σj wj :  w ≥ x–u,  w ≥ u–x,  u in P, x in Q

simply linear constraints

a = (x–u);  H={v: av=a(x+u)/2}
H

au

x

P

Q



Volume Computation

• Exact formula
• Simplicial subdivision 
• Monte Carlo 
• Heuristics

I thought this was new - hadn’t found in literaure;  thanks to Steve Bell for pointing to
Lovász’s paper (added to refs)



Exact Formula for Polytope 

Assume P={x: Ax ≤ b} is simple
− i.e., |{i: A(i, •)x = b(i)}| = n 
for all x ∈ ext(P)

Let f(x) = c’x + d such that f is 
non-constant on each edge of P

f(v)n

N(v) = —————
n!Dw1 ··· wn

vol(P) = Σv∈ext(P) N(v)

Assume 0 ∈ ext(P) and P ⊂ R+ for each v ∈ ext(P), 
S = {i: A(i, •)x = b(i)} 
D = |det(AS)| 

(can update with pivots)

w = [AS]−1c 
(i.e., c = w1A + … + wnA )jnj1



Example

20

2

P

-x1         ≤ 0
-x2 ≤ 0

x1         ≤ 2
x2 ≤ 2

x1 + x2 ≤ 3

ext(P) = {(0, 0),
(2, 0),
(2, 1),
(1, 2),
(0, 2)}

c’= (1, -1),  d=0 ⇒ f(x) = x1 - x2

⇒ N(v1) = 0v1 = (0, 0):  AS1= -1  0
0 -1 , D=1, w=(-1, 1)’

v2 = (2, 0):  AS2= 1  0
0 -1 , D=1, w=( 1, 1)’ ⇒ N(v2) = 

22

———
2! 1·1 = 2

v3 = (2, 1):  AS3= 1  0
1  1 , D=1, w=(2, -1)’ ⇒ N(v3) = 

12

———
2! 2·-1 = -¼



Example (con’t)

20

2

P

-x1         ≤ 0
-x2 ≤ 0

x1         ≤ 2
x2 ≤ 2

x1 + x2 ≤ 3

ext(P) = {(0, 0),
(2, 0),
(2, 1),
(1, 2),
(0, 2)}

v4 = (1, 2):  AS4= 0  1
1  1 , D=1, w=( -2, 1)’

v5 = (0, 2):  AS5= -1  0
0  1 , D=1, w=(-1,-1)’⇒ N(v5) = 

22

———
2! -1·-1 = 2

⇒ N(v4) =
12

———
2! -2·1

= -¼

vol(P) = 0 + 2 – ¼ – ¼ + 2 = 3½

By inspection
vol(P) = vol(•) – vol({) = 4 – ½ = 3½



Simplicial Subdivision

vol(convh{0, v1, …, vn}) = det[v1 …vn]/n!

v1= (2, 0)t

v2= (0, 1)t

vol = ½ det 2 0 
0 1 = 1

Volume of one simplex:

S1 S2

S3

S4S5
S6

S7

S8

S1

S2

S4

S3S5

S6

P = ∪Si s.t. int(Si) ∩ int(Sj) = ϕ for i≠j
⇒ vol(P) = Σi vol(Si)



Other subdivisons

We can decompose P = P1∪P2 ∪… ∪Pk such that 
int(Pi)∩int(Pj)=ϕ for i≠j

so vol(P) = vol(P1) + vol(P2) +…+ vol(Pk)

• We know we can do it with simplexes, but we might not be 
able to “tile” P with other shapes (like squares).

• We could approximate vol(P) with inner and outer
approximations that are easy to compute.

Mathematicians are like Frenchmen:  whenever you say something to them, 
they translate it into their own language, and at once it is something entirely 
different.

J.W.v. Goethe



Approximations

• Inner - find vol(Q) for Q ⊆ P
max Σj log x(j):  x ∈ P, x > 0  
– easy convex program with linear constraints

• Outer - find vol(Q) for Q ⊇ P
max x(j): x ∈ P

– n LPs

20

2

3
—
2

3
—
2

Inner=2¼

Outer = 4

(or 2n LPs if min x(j) could be > 0)



Monte Carlo

Solve Lj = min{xj : Ax ≤ b}  and  Uj = max{xj : Ax ≤ b}

If Lj = Uj for some j, eliminate xj.

Now L < U and assume P has full dimension.

Choose random number sequence and choose associated x in [L, U].
Let y(k) = # times Ax ≤ b in k trials.  Then,

vol(P) = vol([L, U]) lim  y(k)/k
k→∞

Extends using any Q for which vol(Q) is known, P ⊆ Q, and
we can map random number into a point in Q.

vol(Q) = 32
8

4

= (Uj – Lj) p
n
Π
j=1



Choosing random points

for j=1:n
r  = pseudo random value in (0, 1)
xj = Lj + r× (Uj – Lj)

endvol(P) est.= (4/7) ×32 = 18.29

Turn to MATLAB code demo

Count = 0; 
for k=1:MaxIter

x = rand(n,1).*U;
if A*x <= b, Count = Count+1;
end

end
p = Count/MaxIter

* Sharon Wiback had already implemented 
a version of this



Choosing tighter parallelepiped enclosure

Q =  parallelepiped = {Σj yjvj : 0 ≤ yj ≤ 1}, 
where {vj} are linearly independent 

vol(Q) = |det[v1 …vn]|
v1

v2

for j=1:n
yj = pseudo random value in (0, 1)
xj = yj×vj

end

output:  x = Σj yjvj for y ~ IIDU(0, 1)

vol(P) est.= (6/7) × 22.08 = 18.93

0

vol(Q) = det                   = 22.086.4 3.2
2.5  –2.2



Advantage of tighter Q

Claim:  Convergence of Monte Carlo is better using Q than Q’.

Given P ⊂ Q ⊂ Q’

var(Count/k) = p(1–p)/k,  where p = vol(P)/vol(Q),

so p near 1 or 0 is better than p near ½.  

Near 0, however, has other problems with sample size.

Probabilists use the ratio var:mean as measure of convergence 

→ minimizing 1–p is best. 

i.e., Make vol(Q) as close to vol(P) as possible.

Computational note:  vol(Q) and vol(P) could be very large, so 
either scale or estimate log vol(P) = log Count/k + log vol(Q).



Other areas of potential value

• Volonoi diagrams & Delaunay tesselations
• Sampling techniques
• Comparing polyhedra seems to be limited to 3D

Even if you're on the right track, you'll get run over if  you just sit there.
Will Rogers
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