COBRAme: A computational framework for genome-scale models of metabolism and gene expression.

TitleCOBRAme: A computational framework for genome-scale models of metabolism and gene expression.
Publication TypeJournal Article
Year of Publication2018
AuthorsLloyd CJ, Ebrahim A, Yang L, King ZA, Catoiu E, O'Brien EJ, Liu JK, Palsson BO
JournalPLoS Comput Biol
Volume14
Issue7
Paginatione1006302
PubMed Date07/2018
ISSN1553-7358
Abstract

Genome-scale models of metabolism and macromolecular expression (ME-models) explicitly compute the optimal proteome composition of a growing cell. ME-models expand upon the well-established genome-scale models of metabolism (M-models), and they enable a new fundamental understanding of cellular growth. ME-models have increased predictive capabilities and accuracy due to their inclusion of the biosynthetic costs for the machinery of life, but they come with a significant increase in model size and complexity. This challenge results in models which are both difficult to compute and challenging to understand conceptually. As a result, ME-models exist for only two organisms (Escherichia coli and Thermotoga maritima) and are still used by relatively few researchers. To address these challenges, we have developed a new software framework called COBRAme for building and simulating ME-models. It is coded in Python and built on COBRApy, a popular platform for using M-models. COBRAme streamlines computation and analysis of ME-models. It provides tools to simplify constructing and editing ME-models to enable ME-model reconstructions for new organisms. We used COBRAme to reconstruct a condensed E. coli ME-model called iJL1678b-ME. This reformulated model gives functionally identical solutions to previous E. coli ME-models while using 1/5 the number of free variables and solving in less than 10 minutes, a marked improvement over the 6 hour solve time of previous ME-model formulations. Errors in previous ME-models were also corrected leading to 52 additional genes that must be expressed in iJL1678b-ME to grow aerobically in glucose minimal in silico media. This manuscript outlines the architecture of COBRAme and demonstrates how ME-models can be created, modified, and shared most efficiently using the new software framework.

Alternate JournalPLoS Comput. Biol.
PubMed ID29975681
Cover Image: 

Location

Location

417 Powell-Focht Bioengineering Hall

9500 Gilman Drive La Jolla, CA 92093-0412

Contact Us

Contact Us

In Silico Lab:  858-822-1144

Wet Lab:  858-246-1625

FAX:   858-822-3120

Website Concerns: sbrgit@ucsd.edu

 

Visit the Official SBRG YouTube Channel

User Login